Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5714, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177496

RESUMO

N-heterocyclic carbenes (NHCs) have been widely utilized for the formation of self-assembled monolayers (SAMs) on various surfaces. The main methodologies for preparation of NHCs-based SAMs either requires inert atmosphere and strong base for deprotonation of imidazolium precursors or the use of specifically-synthesized precursors such as NHC(H)[HCO3] salts or NHC-CO2 adducts. Herein, we demonstrate an electrochemical approach for surface-anchoring of NHCs which overcomes the need for dry environment, addition of exogenous strong base or restricting synthetic steps. In the electrochemical deposition, water reduction reaction is used to generate high concentration of hydroxide ions in proximity to a metal electrode. Imidazolium cations were deprotonated by hydroxide ions, leading to carbenes formation that self-assembled on the electrode's surface. SAMs of NO2-functionalized NHCs and dimethyl-benzimidazole were electrochemically deposited on Au films. SAMs of NHCs were also electrochemically deposited on Pt, Pd and Ag films, demonstrating the wide metal scope of this deposition technique.

2.
Chem Soc Rev ; 45(16): 4567-89, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-26890605

RESUMO

Interest in homogeneous gold catalysis has undergone a marked increase. As strong yet air- and moisture-tolerant π-acids, cationic gold(i) complexes have been shown to catalyze diverse transformations of alkenes, alkynes and allenes, opening new opportunities for chemical synthesis. The development of efficient asymmetric variants is required in order to take full advantage of the preparative potential of these transformations. During the last few years, the chemical community has achieved tremendous success in the area. This review highlights the updated progress (2011-2015) in enantioselective gold catalysis. The discussion is classified according to the π-bonds activated by gold(i), in an order of alkynes, allenes and alkenes. Other gold activation modes, such as σ-Lewis acid catalyzed reactions and transformations of diazo compounds are also discussed.


Assuntos
Alcadienos/química , Alcenos/química , Alcinos/química , Ouro/química , Catálise , Reação de Cicloadição , Compostos de Diazônio/química , Ácidos de Lewis/química , Oxigênio/química
3.
Metab Eng ; 25: 124-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25046159

RESUMO

Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was identified as the first heterologous chaperone that significantly increases solvent titers above wild type C. acetobutylicum levels, which can be combined with metabolic engineering to further increase solvent production.


Assuntos
Oxirredutases do Álcool/metabolismo , Aldeído Desidrogenase/metabolismo , Proteínas de Bactérias/fisiologia , Biocombustíveis/microbiologia , Clostridium acetobutylicum/fisiologia , Querosene/microbiologia , Engenharia Metabólica/métodos , Oxirredutases do Álcool/genética , Aldeído Desidrogenase/genética , Clostridium acetobutylicum/classificação , Gasolina/microbiologia , Melhoramento Genético/métodos , Especificidade da Espécie
4.
Nature ; 459(7249): 917-8, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19536247
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...